Книга представляет собой комплексное руководство по применению искусственного интеллекта и машинного обучения (ИИ/ML) с целью снижения рисков для современного бизнеса, связанного с использованием этих технологий. Рассмотрены основы управления рисками и компьютерной безопасности, нормативные акты, ответственность за качество продуктов, основанных на ML, а также объяснимые модели и методы их проверки, включая новый фреймворк управления рисками NIST AI. Читателю предложен углубленный взгляд на программирование с использованием Python и подробными примерами для структурированных и неструктурированных данных. Особое внимание уделяется объяснимым бустинговым машинам, библиотеке XGBoost и методам повышения качества моделей ML. Представлены основанные на реальном опыте советы о том, как организовать успешную работу с приложениями высокого риска. Приведены практические примеры, иллюстрирующие важность и сложность внедрения ML в различных отраслях.
Для студентов, инженеров ML и специалистов по обработке данных.